FOOD SAFETY AND HACCP SYSTEM IN THE APPLE JAM PRODUCTION

Abduraimova M., Alibekov R.*, Orymbetova G., Nurseitova Z., Gabrilyants E. M. Auezov South Kazakhstan University, Shymkent, Kazakhstan

Email: amamlakat@inbox.ru, ralibekov@hotmail.com, orim_77@mail.ru, nur.zeinep@mail.ru, gabrilyants@mail.ru

*Corresponding author's e-mail: ralibekov@hotmail.com

ABSTRACT

Jam production technologies applied for processing of fruit raw materials can have critical control points affecting the quality of a final product. The given article contains the analysis of technological processes used at the production of apple jam with pumpkin and Jerusalem artichoke syrup taking into account the principles of the HACCP system. Apple and pumpkin are natural antioxidants and have a high nutritional value and useful properties from medicine point of view. In this regard, it is important to preserve all the benefits of these fruits during manufacturing jam. The technological processes were analyzed step by step, and their critical control points were determined. The most important production stages are reception and sorting, cleaning and sterilization. To avoid negative factors, the monitoring, control and corrective action systems are proposed based on the HACCP/ISO 22000:2018 food safety management system.

Key words: food safety, HACCP, apple jam, antioxidant, hazard, risk, prerequisite.

INTRODUCTION

Food safety is the concept that food does not harm for the consumer, if prepared and / or eaten according to the appropriate use [1]. In this regard, in order to support the stated concept and rules of harmless production, the safety of the power management system is important. Investment in food safety management systems is a key prerequisite for a reliable and stable supply of safe food and the growth of international trade [2, 3].

HACCP (Hazard Analysis and Critical Control Points) is a simple and logical control system based on the concept of preventing problems by identifying hazards, establishing critical control points and developing measures to monitor, prevent and correct them [4]. It should be developed taking into account seven basic principles [5]:

- 1. Analysis of potential hazards;
- 2. Identification of critical control points (CCP).
- 3. Determination of critical limits for CCP.
- 4. Creation of a monitoring system to control CCP.
- 5. Installation of corrective actions.
- 6. Correction of verification procedures.
- 7. Establish guidelines for record keeping and documentation.

When processing fruit raw materials, the technology for the production of jam can set critical control points that will affect the safety of the final product.

The technological process for the production of jam consists of: receiving and sorting the initial products, cleaning, washing, grinding and mixing, filling, packaging, sterilization, storage. There is a potential risk of detecting hazards at every stage of jam production.

The HACCP system should take into account all categories of potential risk: biological, chemical and physical hazards [6].

Biological risks include risks arising from the action of living organisms, including yeast (osmophilic yeast), microorganisms (pathogens), protozoa, parasites, etc., their toxins and waste products.

Chemical risks can be divided according to the source of origin into the following three groups:

1. Accidentally swallowed chemicals;

a) Agricultural chemicals: pesticides, herbicides, plant growth regulators, etc.

b) Chemicals used in enterprises: cleaning agents, detergents and disinfectants, lubricating oils, etc.

c) Infections from the external environment: lead, arsenic, cadmium, mercury, etc.

2. Natural risk factors for metabolic products of plants, animals or microbes, such as like aflatoxins.

3. Chemicals that are deliberately added to food, such as preservatives, acids, food additives, substances that facilitate processing, etc.

Physical risks are associated with the presence of any physical material that is not present in a natural product or food product that can cause illness or harm to a person who has consumed the food (glass, metal, plastic, etc.) [5].

MATERIALS AND METHODS

The following ingredients were used to make the jam: apple, pumpkin and Jerusalem artichoke. Organoleptic and physico-chemical properties were analyzed in accordance with GOST 31712-2012 (Jams. General specifications (Reissue)) [6].

The apple tree is a genus of deciduous trees and shrubs of the Rosaceae family. Apple fiber, although less than most other fruits, stimulates intestinal motility, which may lower the risk of cancer. Fiber may also be beneficial in preventing heart disease, losing weight, and lowering cholesterol levels.

The content of phytoncides makes apples a good physiological antiseptic, and also contains malic, tartaric, citric and other organic acids, antioxidants (preventing oxidative processes), sugar (glucose, sucrose and others), vitamins C, A, B1, carotene, tanning and pectin substances, microelements (iron, copper), macroelements (potassium, calcium, magnesium and others), essential oil, macro- and microelements, tannins.

Apple fruits accumulate dry matter - 10.5 - 19.2%, sugar - 6.4 - 14.9%, pectin substances - 0.88 - 1.43%. Due to the presence of water-soluble pectin and gelling properties, apples are used in cooking, in the preparation of jelly, marmalade, confiture, jam, yoghurt and soft drinks [7].

RESULTS AND DISCUSSION

The presented work provides an analysis of probable hazards in the production of apple jam. All stages of production were analyzed as sources of hazards: receiving and sorting of raw materials, cleaning, washing, grinding and mixing, filling, packaging, sterilization, storage location. The summarized results are presented in Table 1.

Name	Process	Considere	Controlled	Preventive	Responsible
ofoperation	parameters	d factors	hazards	action	person
1.Reception	Apples and	Microbiol	a) bacteria of the	Control at	Head of
and sorting	pumpkins	ogical	Escherichia coli	the	Laboratory
of apples,	should be fresh		group	reception	
pumpkins	or frozen, ripe		b) pathogenic		
and	enough, clean,		microorganisms		
Jerusalem	free of foreign	Chemical	a) pesticides	Input	Head of
artichoke	odor, no stems,		b) herbicides	control	Laboratory
	no damage or		c) plant growth		
	disease.		regulators		
	Jerusalem	Physical	a) glass	Control at	Head of
	artichoke must		b) metal	the	Laboratory
	be clean, no		c) plastic	reception	
	mechanical				
	damage, no				
	damage by				
	diagonal no				
	uiseases, no				
2 Cleaning	The remains of	Microbiol	Bactaria virusas	Cleaning	Foreman
2. Cleaning	unsuitable	ogical	vegete moulde	process	roreman
	parts of raw	Ogical	and	control	
	materials		viruses	control	
3 Washing	Removal of	Physical	If the fruit	Control of	Foreman
5. Wushing	mechanical	i nysieui	washing process	washing	roronnun
	impurities.		is not followed.	process	
	detergent		foreign	process	
	residues.		substances may		
	microorganism		remain		
	s and				
	pesticides				
4. Grinding	Metal objects,	Physical	If the grinding	Control	Foreman
_	personal	-	process is not	grinding	
	belongings of		followed, foreign	processes	
	staff		objects or		
			particles may get		
			into the finished		
			product		
5. Mixing	Foreign	Physical	If the mixing and	Control	Foreman
and cooking	objects,		cooking processes	mixing	
	personal		are not followed,	and	
	belongings of		toreign objects or	cooking	
	staff		particles may	processes	
			enter the finished		
			product.		

Table 1 - Analysis of hazards in the production of apple jam.

Table 1 continuation

6 Filling	Contominated	Microbiol	Starilization	Control of	Foromon
0. Finnig		• 1	Stermzation		roreman
	packaging	ogical		the	
				filling	
				process	
				into	
				the	
				packaging,	
				the	
				creation of	
				aseptic	
				conditions	
7. Packing	Presence of	Physical	If the packing	Control of	Foreman
	foreign		process	the	
	objects		is disregard,	packing	
	-		foreign	process	
			objects or	-	
			particles		
			can input into the		
			finished product		
			(rubber from the		
			cover glass		
			cover, glass,		
Q	Incorrect	Microbiol	Escherichia coli	Creating	Foromon
0. Starilization	compliance	orical	bacteria	asentia	roreman
Stermzation	of the	ogical	Dacterra	aseptic	
	of the	D1 1	T	Conditions	
	sterilization	Physical	Impurities	Use of	
	process		Metal parts of	metal	
			equipment	detector	
9. Storage	Package	Microbiol	Temperature,°C	Control of	Foreman
	integrity	ogical	Duration, h	temperatur	
				e-time	
				variation	

The technological scheme for obtaining apple jam with the determination of possible CCP (critical control points) is shown in Fig. 1.

Fig. 1. Technological scheme of apple jam production and CCPs

Analyzing Fig. 1, three high-risk CCPs can be identified: reception and sorting, cleaning and sterilization. These production steps and proposed control actions are presented in Table 2.

Prerequisite	Risk	Control actions	Degree of
			risk
CCP 1	Reception and sorting	Apples and pumpkin should be fresh	High
	of apples, pumpkins,	or frozen, ripe enough, clean, free of	
	Jerusalem	foreign odor, no stems, no damage or	
		disease.	
		Jerusalem artichoke must be clean,	
		no mechanical damage, no damage	
		by pests and diseases, no peduncles.	
		More thorough visual inspection and	
		laboratory analysis of products.	
CCP 2	Cleaning	Compliance strictly with the	High
		parameters of cleaning, identifying	
		rotten, mismatching products,	
		cleaning of foreign objects	
CCP 3	Sterilization	Control of sterilization parameters	High

Table 2 - Preconditions for the risk assessment and control actions of the CCP in the production of apple jam

CONCLUSION

Thus, the analysis of the most possible hazards in the production of apple jam was carried out, taking into account the possible prerequisites for CCP (critical control points): biological, chemical and physical risks. Hazards and critical control points are identified, the important stages of production are: reception and sorting, cleaning and sterilization. As an operational check, visual inspection and laboratory analysis of all products is required. A monitoring system is also required to control the CCP and corrective actions. In order to avoid negative factors, monitoring, control and corrective action systems based on the HACCP / MS ISO 22000: 2018 Food Safety Management System.

REFERENCES

1 R.S. Alibekov, D.S. Dabadé, K.A. Urazbayeva, G.E. Orymbetova, Z.I. Alibekova. Food safety and HACCP system in the PHYSALIS confiture production, News of the National Academy of Sciences of the Republic of Kazakhstan, Series Chemistry and Technology 2019, no. 4(436), pp. 6-11.

2 R.S. Alibekov, A.A. Utebayeva, A.Zh. Kaldybekova, E.A. Gabrilyants, A.S. Balabekova. Sensory analysis of eastern sweet – parvarda. Industrial Technology and Engineering, 2016, no. 2(19), pp. 5-15.

3 A. Utebaeva, R. Alibekov, V. Evlash, V. Lonkin Functional jam based on the grapes seedless raisins. Industrial Technology and Engineering. 2020, 2 (35), pp. 25-32.

4 R.S. Alibekov, A.A. Yunusova, A.R. Bakhtybekova. Food safety and HACCP system in the enriched cottage cheese production. The Journal of Almaty Technological University, 2016, Volume 4, pp. 48-53.

5 Keener, Larry. "HACCP: A view to the bottom line." Food Safety Mag., 2002, no. 8, pp. 20-24.

6 ISO 22000:2018 - Food safety management systems; Requirements for any organization in the food chain.

7 Interstate Standard of Jam GOST 31712-2012. Jams. General specifications. Raw materials and products food. Preparation of tests. Mineralization for determination of the toxic elements content.