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ABSTRACT 
 
The solution of inverse problems of thermal conductivity with a high-precision scheme 

is carried out by the method of approximate selection in the given article. 
However, they try to use internal inverse problems of thermal conductivity to simplify 

calculations, which leads them to specific analytical expressions that are independent of the 
thermal effect, temperature field, and geometry of the sample. The solution of inverse 
problems of thermal conductivity with a high-precision scheme is carried out by the method 
of approximate selection. 

The high-precision method is considered with the crank-Nicholson type difference 
scheme in this article. The crank-Nicholson type scheme is a parabolic differential equation of 
finite difference. 

In particular, the advantage of the difference scheme is that the solution in the upper 
time layer is obtained immediately according to the values of the grid function in the lower 
time layer and it is without the solution of the system of linear algebraic equations (Satz), and 
also in it the solution becomes known (at k = 0, the values of the grid function are formed 
from the initial situation). But the same scheme has a significant disadvantage, since it is 
conditionally stable. On the other hand, the fuzzy difference scheme leads to the need to solve 
the SATs of a system of linear algebraic equations, but this scheme is absolutely stable. 

The solution of the inverse problem of thermal conductivity with a high-precision 
circuit is defined as the limit of the solution group.For example, a well-known calculation 
algorithm of the Matrix method is used to solve a three-point boundary problem, the 
parameters of which satisfy the stability condition. Since there are inverse matrices, the 
necessary conditions for the stability of the Matrix method are met. 

 
Keywords: heat conduction equations, increased accuracy method, regularized 

problems, ill-posed problems, approximation, stability, matrix sweep method, stability 
method. 

 
 
INTRODUCTION 

 
The solution of inverse problems of thermal conductivity with a high-precision scheme 

is carried out by the method of approximate selection in the given article. 
However, they try to use internal inverse problems of thermal conductivity to simplify 

calculations, which leads them to specific analytical expressions that are independent of the 
thermal effect, temperature field, and geometry of the sample. The solution of inverse 
problems of thermal conductivity with a high-precision scheme is carried out by the method 
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of approximate selection. 
 

Let’s consider the following mixed problem for the heat equation with reverse time flow 
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The method of improved accuracy- a difference scheme of the Crank-Nicolson type.is 

considered in the given article. [1] It is known that problem (1)-(3) is equivalent to the 
following problem: 
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The solution to problem (4)–(6) is defined as the limit of the solution family { φa (x, t)} 

of the following regularizable problems in the theory of ill-posed problems: 
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MATERIALS AND METHODS 

 
Here a is a positive number, which is called the regularization parameter. In the works, 

the solutions (7) - (10) for each fixed value is classically correct and its solution φa(x,t) as α 
→ 0 converges to the solution of the original ill-posed problem (1) - (3). 
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Approximation 
Let ( ) ( ), ,a x t V x tϕ =  in a rectangle { }: 0 1,0x t TΠ ≤ ≤ ≤ ≤  introduce the following 

difference mesh: 
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In internal nodes ( ),k nx t  (k 1, N-1;  n 1,M)= =  difference meshωhτзthe solutions (7)–

(10) is approximated by the difference problem 
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Here the difference operator 0

αА isdefined as 
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Let us expand the mesh functions in a Taylor series 1
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neighborhood of point (xk, tn) [1,2].  
Difference solutions (11) – (13) approximates solutions (7) – (10) with order 0 

( )2 2hτ +  in the class of solutions that have continuous partial derivatives up to the third order 
in t and up to the sixth order in x. 

 
RESULTS AND DISCUSSION 
 
Solvability 
To prove the unique solvability of the difference solution (11) -(13), we represent it in 

the following form: 
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Proximately the same as the symmetric matrix Ba=E- τAa/2 has the following 
eigenvalues: 
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We choose the regularization parameter a and the difference scheme steps h and τ from 

the condition: 
 

2 8h a≤ , 16aτ ≤        (16) 
 

then all ( )S aBλ  ( )1,2,..., 1s N= −  will be positive, and the matrix Ba is improper, since 
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Therefore, solution (3.3.14) - (3.3.15) is uniquely solvable. 
 
Stability 
We represent the matrix aA  in the shape of a sum 
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It is known that the matrix hA  - is definedpositively. [3,4] Taking into account the 

representation (17), we rewrite the difference equation (14) in the form of: 
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The last equation is scalar multiplied by the vectorWn+1/2 = Vn+1 + Vn: 
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From this equation we obtain the following congruence: 
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In the well-known young inequality 
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We rewrite congruence (18) in the form: 
 

.
8

21221 nnnn VV
a

VV ++≤ ++ τ  

 
From the last congruence we determine: 
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If we assume 0,1,..., 1n M= − , ( n Tτ ≤ ), then under condition (16) it is easy to establish 

that for any n we have the estimate 
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The last estimate characterizes the stability of the difference scheme (14)–(15). 
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Solution method 
 
In our case, the matrix sweep method is convenient. 
To do this, we rewrite problem (14)–(15) in a vector form. 
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where matrixes A, B, C, B0, C0, AN, BN and vectors n
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 as well as boundary conditions (15). 

 
CONCLUSION 
 
The well-known computational algorithm of the matrix sweep method is used to solve 

the three-point boundary value problem. Parameters τ, h and a are chosen to satisfy the 
stability condition [5]. Since reciprocal matrices ,, , 111

0
−−−
NBBB  exist, the necessary conditions 

for the stability of the matrix sweep method are satisfied. 
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